POINT AND INTERVAL FORECASTS OF DEATH RATES USING NEURAL NETWORKS

نویسندگان

چکیده

Abstract The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose convolutional neural network (NN) architecture for rate forecasting, empirically compare this as well other NN models to the and find that lower forecast errors are achievable many countries Human Mortality Database. provide details on forecasts of our make it more understandable and, thus, trustworthy. As default only yield point estimates, previous works applying them modeling have not investigated prediction uncertainty. address gap literature implementing bootstrapping-based technique demonstrate yields highly reliable intervals model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates

The present paper examines the out-of-sample forecasting performance of four conditional volatility models applied to the European Monetary System (EMS) exchange rates. In order to provide improved volatility forecasts, the four models’ forecasts are combined through simple averaging, an ordinary least squares model, and an artificial neural network. The results support the EGARCH specification...

متن کامل

Uncertainty of Weekly Nitrate-Nitrogen Forecasts Using Artificial Neural Networks

Nonpoint source pollution affects the quality of numerous watersheds in the Midwestern United States. The Illinois State Water Survey conducted this study to ~1! assess the potential of artificial neural networks ~ANNs! in forecasting weekly nitrate-nitrogen ~nitrate-N! concentration; and ~2! evaluate the uncertainty associated with those forecasts. Three ANN models were applied to predict week...

متن کامل

Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods

Using the ageand sex-specific data of 14 developed countries, we compare the point and interval forecast accuracy and bias of ten principal component methods for forecasting mortality rates and life expectancy. The ten methods are variants and extensions of the Lee-Carter method. Based on one-step forecast errors, the weighted HyndmanUllah method provides the most accurate point forecasts of mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Astin Bulletin

سال: 2021

ISSN: ['0515-0361', '1783-1350']

DOI: https://doi.org/10.1017/asb.2021.34